Independent Power Producer
Independent Power Producer




Located on the south coast of Alaska, Kodiak Island is home to the United States’ largest Coast Guard base, the nation’s third most productive fishing port and 3,000 of the famous, namesake Kodiak bears. The residents of the island rely on the Kodiak Electric Association (KEA) to generate and distribute power safely and reliably.

KEA operates an isolated grid system with a peak load of approximately 27 megawatt (MW) and a minimum load of 11 MW. The main power source comes from two 11.5 MW hydroelectric turbine generators located at the island’s Terror Lake. KEA also operates four independent diesel generation facilities totaling 33 MW of available capacity. In 2009, KEA added 4.5 MW of wind power with the completion of phase I of the Pillar Mountain Wind Project.

In 2007, KEA set a goal to produce 95 percent of energy sales from cost-effective renewable power resources by the year 2020 to reduce their reliance on diesel fuel and lower the cost of generation. Today the island has achieved that goal through a combination of hydroelectric and wind energy. The use of greater amounts of wind energy to reach the renewables goal has been made possible by the intelligently controlled battery system engineered, commissioned, and upgraded by Younicos.





For phase II, KEA’s goal meant doubling the wind project’s capacity to 9 MW. Given the inherent intermittency of wind power, KEA performed a detailed study to investigate the possible impact that adding 4.5 MW of wind would have on grid reliability. While the hydroelectric facility provided an excellent source of clean energy, it was not responsive enough to maintain grid frequency in the event of a sudden loss of wind power. In order to maintain the same level of reliable power delivery, KEA faced the unfavorable prospect of bringing more diesel generators online to provide frequency regulation and spinning reserves during high wind generating hours.


This additional diesel generation would require curtailing available wind power and consuming more diesel fuel – effectively increasing the cost of delivered energy and diluting the percentage of energy sales from renewable resources.




Not satisfied with the idea of increasing wind capacity only to run more diesel generators, KEA set out to find a more efficient solution. After investigating various technologies and companies, KEA selected Younicos to design, build, install, and commission an integrated 3 MW battery-based energy storage system to provide robust and reliable frequency regulation – enabling the full 9 MW green promise of the Pillar Mountain Wind Project to be delivered to its customers.

”Keeping grid frequency and voltage together is the biggest issue of wind generation on an island. Batteries are really the best solution for us.“


Darron Scott, President/CEO of KEA



Since its commissioning in November 2012, the Younicos ESS has successfully responded to over 253,000 frequency events – an average of approximately 165 events per day. This fast-acting, accurate response has helped to avoid multiple potential power losses and in some cases, prevented island-wide blackouts due to sudden drops in grid frequency.

Younicos ESS allows KEA to take full advantage of the 9 MW of wind capacity without increasing diesel fuel consumption. Overall, phase I and phase II of the wind project, coupled with the addition of the ESS has allowed KEA to deliver 114 million kWh of wind energy, and save 8 million gallons of diesel fuel – delivering on its commitment to reliable, affordable and renewable power for its customers.





of wind capacity without increasing diesel fuel consumption



of wind energy – save 8 million gallons of diesel fuel



of real power within 50 milliseconds whenever the grid frequency drops below 59.8 Hz




The Younicos Energy Storage System (ESS) originally comprised two 1.5 MW power conversion systems (PCS), each paired with 15 minutes of advanced lead-acid energy storage – all seamlessly integrated with the grid. In Q3/2017 the system will be upgraded to lithium ion for enhanced performance.
The ESS monitors grid conditions 100 times per second and instantly delivers up to 3 MW of real power within 50 milliseconds whenever grid frequency drops below 59.8 Hz, as shown in Figure 1. The system can also provide peak power of 4.5 MW for 30 seconds with 150% overload capability. This allows KEA to maintain their excellent history of ensuring grid stability while maximizing use of the island’s abundant wind energy.